Home
Class 11
MATHS
15. lim->oo(n^4+n^3+A1n^2+A2n+A3)^(1/2)-...

15.` lim->oo(n^4+n^3+A_1n^2+A_2n+A_3)^(1/2)`-`(n^4+n^3+B_1n^2+B_2n+B_3)^(1/2)` equals1,4-B: 24 +B: 3) By – A. 4) 4-B.

Promotional Banner

Similar Questions

Explore conceptually related problems

[(. ^nC_0+^n C_3+)-1/2(.^n C_1+^n C_2+^n C_4+^n C_5]^2 + 3/4(.^n C_1-^n C_2+^n C_4 +)^2= equals to a. 3 b. 4 c. 2 d. 1

[(^nC_0+^n C_3+)-1/2(^n C_1+^n C_2+^n C_4+^n C_5]^2 + 3/4(^n C_1-^n C_2+^n C_4 +)^2= a. 3 b. 4 c. 2 d. 1

lim_ (n rarr oo) (3 ^ (n + 1) + 4 ^ (n + 1)) / (3 ^ (n) + 4 ^ (n)) equals

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_ (n rarr oo) [(1 ^ (3)) / (n ^ (4) + 1 ^ (4)) + (2 ^ (3)) / (n ^ (4) + 2 ^ (4)) ++ (1) / (2n)] =

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B