Home
Class 12
MATHS
Consider the function f(x)=(cos^-1 (1-{...

Consider the function `f(x)=(cos^-1 (1-{x}))/(sqrt2{x})` ; where {.} denotes the fractional part function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is