Home
Class 12
MATHS
((176)^(1/3)xx(2161)^(1/4))/(215)^4xx(0....

`((176)^(1/3)xx(2161)^(1/4))/(215)^4xx(0.98)^5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-2/3)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)

Simplify : (3^(-3)xx6^(2)xx sqrt(98))/(5^(2)xx((1)/(25))^((1)/(3))xx(15)^(-(4)/(3))xx3^((1)/(3)))

Prove that: (2^(1/2)\ xx\ 3^(1/3)\ xx\ 4^(1/4))/(10^(-1/5)\ xx\ 5^(3/5))\ -:(3^(4/3)\ xx\ 5^(-7/5))/(4^(-3/5)\ xx\ 6)=10

(2^((1)/(2))xx3^((1)/(3))xx4^((1)/(4)))/(10^(-(1)/(5))xx5^((3)/(5)))-:(3^((4)/(3))xx5^(-(7)/(5)))/(4^(-(3)/(5))xx6)=10

When simplified,the expression (100)^(1/2) xx (0.001)^(1/3)-(0.0016)^(1/4) xx 3^0 + (5/4)^(-1) is equal to :