Home
Class 12
MATHS
If f(x) is continuous at x=(pi)/(4) wher...

If `f(x)` is continuous at `x=(pi)/(4)` where `f(x)=(2sqrt(2)-(cos x+sin x)^(3))/(1-sin2x)` ,for `x!=(pi)/(4)` then `f((pi)/(4))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x= pi/4 , where f(x)=(cos x- sin x)/(cos 2x) , for x!= pi/4 , then f(pi/4)=

If f(x) is continuous at x = pi , where f(x)=(sqrt(2+cos x)-1)/((pi-x)^(2))", for " x!= pi , then f(pi)=

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=pi/4 , where f(x)=(1-tanx)/(1-sqrt(2)sin x) , for x!= pi/4 , then f(pi/4)=

If f(x) is continuous at x=pi/4 , where f(x)=(1-tanx)/(1-sqrt(2)sin x) , for x!= pi/4 , then f(pi/4)=

If f(x) is continuous at x= pi/4 , where f(x)=(2-cosec^(2)x)/(cot x-1) , for x!= pi/4 , then f(pi/4)=