Home
Class 12
MATHS
lim(x ->0^+) (cosec x)^(1/logx)...

`lim_(x ->0^+) (cosec x)^(1/logx)`

Text Solution

Verified by Experts

`l = lim_(x->0^+) (cosec x)^(1/logx) , (oo)^(1/oo) x`
`log l = lim_(x->0^+) 1/log x log cosecx`
`= lim_(x->0^+) (-1/(cosecx) cotxcosecx)/(1/x)`
`= lim_(x->0+) x cotx`
`log l = 0`
`l= 1`
Answer
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x(cosec x)

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is