Home
Class 11
MATHS
Let Pn=(2^3-1)/(2^3+1)*(3^3-1)/(3^3+1)*(...

Let `P_n=(2^3-1)/(2^3+1)*(3^3-1)/(3^3+1)*(4^3-1)/(4^3+1)....... (n^3-1)/(n^3+1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P_ (n) = (2 ^ (3) -1) / (2 ^ (3) +1) * (3 ^ (3) -1) / (3 ^ (3) +1) * (4 ^ ( 3) -1) / (4 ^ (3) +1) ...... (n ^ (3) -1) / (n ^ (3) +1) Prove that lim_ (n rarr oo) P_ ( n) = (2) / (3)

Let S_n=1+2+3++n and P_n=(S_2)/(S_2-1)*(S_3)/(S_3-1)*(S_4)/(S_4-1)* . . . *(S_n)/(S_n-1) Where n in N ,(ngeq2)dot Then lim_(n→oo)P_n=______

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

Let S_(n)=1+2+3+...+n and P_(n)=(S_(2))/(S_(2)-1)*(S_(3))/(S_(3)-1)*(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1) Where n in N,(n>=2). Then lim_(x rarr oo)P_(n)=

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

1/(2!) +2/(3!)+3/(4!)+. . . +(n )/((n+1)!)=

If A=[1 1 1 1 1 1 1 1 1] , prove that A^n=[3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)], n in Ndot

Let S_(n) = ( 1)/( 1^(3)) + ( 1+2)/( 1^(3) + 2^(3)) +"...." + ( 1+ 2 + "...." + n)/(1^(3) +2^(3)"...."+n^(3)), n = 1,2,3,"....." , Then S_(n) is not greater than :