Home
Class 11
MATHS
If the roots of the equation x^2+a x+b=0...

If the roots of the equation `x^2+a x+b=0a r eca n dd ,` then roots of the equation `x^2+(2c+a)x+c^2+a c+b=0` are a `c` b. `d-c` c. `2c` d. `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation x^2+a x+b=0 are c and d , then roots of the equation x^2+(2c+a)x+c^2+a c+b=0 are a c b. d-c c. 2c d. 0

If the roots of the equation x^2+a x+b=0 are c and d , then roots of the equation x^2+(2c+a)x+c^2+a c+b=0 are a c b. d-c c. 2c d. 0

If the roots of the equation x^(2)+ax+b=0 arecandd,then roots of the equation x^(2)+(2c+a)x+c^(2)+ac+b=0 are a c b.d-c c.2c d.0

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

The roots of the equation ( a-b) x^2 +(b-c) x+ (c-a) =0 are

If a+b+c=0, a,b,c in Q then roots of the equation (b+c-a) x ^(2) + (c+a-c) =0 are:

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c