Home
Class 12
MATHS
Given y = tan^(-1) ((2x)/(1-x^2)), then ...

Given` y = tan^(-1) ((2x)/(1-x^2))`, then `((d^5y)/(dx^5))_(x=0)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Giveny =tan^(-1)((2x)/(1-x^(2))), then ((d^(5)y)/(dx^(5)))_(x=0) is equal to

If y=Ae^(5x) , then (d^(2)y)/(dx^(2)) is equal to

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y=tan^(-1)((4x)/(1+5x^(2)))+tan^(-1)((2+3x)/(3-2x)) , then (dy)/(dx) is equal to a) (5)/(1+25x^(2)) b) (1)/(1+25x^(2)) c)0 d) (5)/(1-25x^(2))

If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to