Home
Class 12
MATHS
If f(x)=|x|^(|sinx|) then f'(-pi/4) is...

If `f(x)=|x|^(|sinx|)` then `f'(-pi/4)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|sinx|) then f^1(-pi/4) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=|x|^(|sinx|) , then f'((pi)/(4)) equals

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)