How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of deuterium? The fusion reaction can be taken as `._1H^2+._1H^2to ._1H^3+n+3.17MeV`
Text Solution
AI Generated Solution
To solve the problem of how long a 100W electric lamp can be kept glowing by the fusion of 2.0 kg of deuterium, we will follow these steps:
### Step 1: Calculate the number of deuterium atoms in 2.0 kg
The molar mass of deuterium (D or \( _1H^2 \)) is approximately 2 g/mol.
1. Convert 2.0 kg to grams:
\[
2.0 \, \text{kg} = 2000 \, \text{g}
...
Topper's Solved these Questions
ATOMS AND NUCLEI
PRADEEP|Exercise (II) very short answer 16|1 Videos
ATOMS AND NUCLEI
PRADEEP|Exercise (I) Short Answer questions 1|1 Videos
COMMUNICATION SYSTEMS
PRADEEP|Exercise MODEL TEST PAPER-2|9 Videos
Similar Questions
Explore conceptually related problems
The binding energy of deuteron ._1^2 H is 1.112 MeV per nucleon and an alpha- particle ._2^4 He has a binding energy of 7.047 MeV per nucleon. Then in the fusion reaction ._1^2H + ._1^2h rarr ._2^4 He + Q , the energy Q released is.
The atomic masses of deuteron, helium, neutron are 2.014 amu, 3.017 amu and 1.008 amu respectively. On fusion of 0.5 kg of deuterium, ""_(1)H^(2) + ""_(1)H^(2) to ""_(2)He^(3) + ""_(0)n^(1) , the total energy released is
In the fusion reaction _1^2H+_1^2Hrarr_2^3He+_0^1n , the masses of deuteron, helium and neutron expressed in amu are 2.015, 3.017 and 1.009 respectively. If 1 kg of deuterium undergoes complete fusion, find the amount of total energy released. 1 amu =931.5 MeV//c^2 .
The deuterium-tritium fusion reaction (called the D-T reaction) is most likely to be the basic fusion reaction in a future thermonuclear fusion reactor is ._(1)^(2)H+._(1)^(3)Hrarr._(2)^(4)He+._(0)^(1)n+Q (a) Calculate the amount energy released in the reaction, given m(._(1)^(2)H)=0.014102 amu. m(-(1)^(3)H)=3.016090 amu, m(._(0)^(1_n)=1.008665 amu and m(._(2)^(4)He)=4.002603 amu. (b) Find the kinetic energy needed to overcome coulumb repulsion. Assume the radius of both deterium and tritium to he approximately 1.5xx10^(-15)m . (c) To what temperature must the gases be heated to initiate the fusion reaction? Take Boltzmann constant k=1.38xx10^(-23) JK^(-1) .
What is the approximate percentage of mass converted into energy in the following thermonuclear reaction ? ._1H^2+._1H^2+._1H^2 to ._2He^4 + ._1H^1 +._0n^1+21.6 MeV
How many kilowatt hours of energy are released from 25 g deuterium ""_(1)^(2)H fuel in the fusion reaction, ""_(1)^(2)H+""_(1)^(2)Hto""_(2)^(4)He+gamma where the masses are ""_(1)^(2)H=2.014102u and ""_(2)^(4)He=4.002603u
PRADEEP-ATOMS AND NUCLEI-Assertion- Reason type question 12