Home
Class 12
PHYSICS
The ground state energy of hydrogen atom...

The ground state energy of hydrogen atom is -13.6 eV (i) What are the potential energy and K.E. of electron is 3rd excited state?
(ii) If the electron jumped to the ground state form the third excited state, calculate the frequency of photon emitted.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will break it down into two parts as stated in the question. ### Part (i): Potential Energy and K.E. of Electron in 3rd Excited State 1. **Identify the Energy Formula**: The energy of an electron in the nth orbit of a hydrogen atom is given by the formula: \[ E_n = -\frac{13.6 \, \text{eV}}{n^2} \] 2. **Determine n for the 3rd Excited State**: The 3rd excited state corresponds to \( n = 4 \) (since the ground state is \( n = 1 \), the first excited state is \( n = 2 \), the second excited state is \( n = 3 \), and the third excited state is \( n = 4 \)). 3. **Calculate the Energy for n = 4**: Substitute \( n = 4 \) into the energy formula: \[ E_4 = -\frac{13.6 \, \text{eV}}{4^2} = -\frac{13.6 \, \text{eV}}{16} = -0.85 \, \text{eV} \] 4. **Calculate the Kinetic Energy (K.E.)**: The kinetic energy of the electron is equal to the negative of the total energy: \[ K.E. = -E_4 = -(-0.85 \, \text{eV}) = 0.85 \, \text{eV} \] 5. **Calculate the Potential Energy (P.E.)**: The potential energy is twice the kinetic energy but negative: \[ P.E. = -2 \times K.E. = -2 \times 0.85 \, \text{eV} = -1.70 \, \text{eV} \] ### Summary of Part (i): - K.E. = 0.85 eV - P.E. = -1.70 eV --- ### Part (ii): Frequency of Photon Emitted when Jumping to Ground State 1. **Determine the Energy of the Ground State**: The energy of the ground state (n = 1) is: \[ E_1 = -13.6 \, \text{eV} \] 2. **Calculate the Change in Energy (ΔE)**: The change in energy when the electron jumps from the 3rd excited state (n = 4) to the ground state (n = 1) is: \[ \Delta E = E_1 - E_4 = -13.6 \, \text{eV} - (-0.85 \, \text{eV}) = -13.6 + 0.85 = -12.75 \, \text{eV} \] 3. **Convert ΔE to Joules**: To find the frequency, we need to convert energy from eV to Joules. Using \( 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \): \[ \Delta E = 12.75 \, \text{eV} \times 1.6 \times 10^{-19} \, \text{J/eV} = 2.04 \times 10^{-18} \, \text{J} \] 4. **Use Planck's Equation to Find Frequency (ν)**: The relationship between energy and frequency is given by: \[ \Delta E = h \nu \] where \( h = 6.63 \times 10^{-34} \, \text{J s} \). Rearranging gives: \[ \nu = \frac{\Delta E}{h} = \frac{2.04 \times 10^{-18} \, \text{J}}{6.63 \times 10^{-34} \, \text{J s}} \approx 3.08 \times 10^{15} \, \text{Hz} \] ### Summary of Part (ii): - Frequency of photon emitted, \( \nu \approx 3.08 \times 10^{15} \, \text{Hz} \) ---

To solve the problem step by step, we will break it down into two parts as stated in the question. ### Part (i): Potential Energy and K.E. of Electron in 3rd Excited State 1. **Identify the Energy Formula**: The energy of an electron in the nth orbit of a hydrogen atom is given by the formula: \[ E_n = -\frac{13.6 \, \text{eV}}{n^2} ...
Promotional Banner

Topper's Solved these Questions

  • ATOMS AND NUCLEI

    PRADEEP|Exercise Fill in the blank 2|1 Videos
  • ATOMS AND NUCLEI

    PRADEEP|Exercise Multiple choice questions 1|1 Videos
  • ATOMS AND NUCLEI

    PRADEEP|Exercise curiocity quetions 3|1 Videos
  • COMMUNICATION SYSTEMS

    PRADEEP|Exercise MODEL TEST PAPER-2|9 Videos

Similar Questions

Explore conceptually related problems

The ground state energy of hydrogen atom is -13.6 eV . What is the potential energy of the electron in this state

The ground state energy of hydrogen atom is -13.6 eV. (i) What is the kinetic energy of an electron in the 2^(nd) excited state ? (ii) If the electron jumps to the ground state from the 2^(nd) excited state, calculate the wavelength of the spectral line emitted.

The ground state energy of hydrogen atom is -13.6 eV. What are the kinetic and potential energies of the electron in this state ?

The ground state energy of hydrogen atom is -13.6 e V . a. What is the kinetic energy of electron in the second excited state? b. If the electron jumps to the ground state from the second excited state , calculate the wavelength of the spectral line emittted.

The ground state energy of hydrogen atom is -13.6eV. What are P.E. and K.E. of electron in this state?

The ground state energy of the hydrogen atom is 13.6 eV. Calculate (i)the kinetic energy of the electron in the 1^(st) excited state. (ii)the potential energy of the electron in the 3^(rd) excited state. (iii)frequency of the photon emitted if the electron jumps from the 3^(rd) excited state of 1^(st) excited state.

PRADEEP-ATOMS AND NUCLEI-Exercise
  1. The ground state energy of hydrogen atom is -13.6eV. If an electron ma...

    Text Solution

    |

  2. The ground state energy of hydrogen atom is -13.6eV. If an electron ma...

    Text Solution

    |

  3. The ground state energy of hydrogen atom is -13.6 eV (i) What are the...

    Text Solution

    |

  4. At what speed must an electron revolve around the nucleus of hydrogen ...

    Text Solution

    |

  5. Calculate the frequency of revolution of electron in the second Bohr's...

    Text Solution

    |

  6. Determine the radius of the first orbit of hydrogen atom. What would b...

    Text Solution

    |

  7. The wavelength of first members of Lyman series is 1216A^(@). Calculat...

    Text Solution

    |

  8. The wavelength of K(alpha) line for copper is 1.36^(@). Calculate the ...

    Text Solution

    |

  9. Calculate the longest and shortest wavelength in the Balmer series of ...

    Text Solution

    |

  10. Calculate longest wavelength of Paschen series. Given R=1.097xx10^(7)m...

    Text Solution

    |

  11. The seond line of Balmer series has wavelength 4861 Å The wavelength o...

    Text Solution

    |

  12. The Rydberg constant for hydrogen is 1.097xx10^(7)m^(-1). Calculate th...

    Text Solution

    |

  13. Calculate the wavelength of photon emitted when an electron jumps form...

    Text Solution

    |

  14. The ionisation energy of hydrogen atom is 13.6 eV. Calculate Rydberg's...

    Text Solution

    |

  15. Energy of an electron in an excited hydrogen atom is -3.4eV. Its angua...

    Text Solution

    |

  16. A hydrogen atom initially in the ground level absorbs a photon, Which ...

    Text Solution

    |

  17. A 12.9 eV beam of electrons is used to bombard gaseous hydrogen atom a...

    Text Solution

    |

  18. Fig. shows energy level diagram of hydrogen atom. Find out the transit...

    Text Solution

    |

  19. A hydrogen atom rises form its n=1 state to the n=4 state by absorbing...

    Text Solution

    |

  20. If in nature they may not be an element for which the principle quantu...

    Text Solution

    |