Establish the Boolean identity `A.B+A.B.C+bar.B+A.bar.C=B+A.C`
Text Solution
AI Generated Solution
To establish the Boolean identity \( A.B + A.B.C + \overline{B} + A.\overline{C} = B + A.C \), we will simplify the left-hand side (LHS) step by step and show that it is equal to the right-hand side (RHS).
### Step 1: Write down the LHS
The left-hand side of the equation is:
\[
LHS = A.B + A.B.C + \overline{B} + A.\overline{C}
\]
...
Topper's Solved these Questions
ELECTRONIC DEVICES
PRADEEP|Exercise SAMPLE PROBLEM|2 Videos
ELECTRONIC DEVICES
PRADEEP|Exercise CONCEPTUAL PROBLEMS|1 Videos
ELECTROMAGNETIC WAVES
PRADEEP|Exercise II Focus multiple choice question|5 Videos
ELECTROSTATICS
PRADEEP|Exercise ASSERTION-REASON TYPE QUESTIONS|2 Videos
Similar Questions
Explore conceptually related problems
Establish the Boolean identity A.C+A.B.C=A.C
Let A, B and C be any three logic variables, prove the following Boolean identity. A.B.C+A.barB.C+A.B.barC=A.(B+C)
If (i) A = 1, B = 0, C = 1, (ii) A = B = C = 1, (iii) A = B = C = 0 and (iv) A = 1 = B, C = 0 then which one of the following options will satisfy the expression, X=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)
In the Boolean algebra bar((bar(A).bar(B))). A equal to
What will be the input A and B for the Boolean expression (bar(A+B)).(bar(A.B)) =1 ?
What will be the input of A and B for the Boolean expression bar((A+B)).bar((A.B))=1 ?
Let ABC be a triangle whose circumcentre is at P. If the position vectors of A,B,C and P are bar(a),bar(b),bar(c) and (bar(a)+bar(b)+bar(c))/(4) respectively then the positive vector of the orthocentre of the triangle is
If bar(a),bar(b) and bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(1)/(sqrt(2))(bar(b)+bar(c)) ],then which of the following statements are correct A. (bar(a),bar(c))=(3 pi)/(4) B. (bar(a),bar(b))=(3 pi)/(4) C. (bar(a),bar(b)+bar(c))=(pi)/(2) D.(bar(b),bar(c))=0
If bar(c)=3bar(a)+4bar(b) and 2bar(C)=bar(a)-3bar(b) then which of the following are incorrect (A) bar(c) and bar(a) have same direction (B) bar(c) and bar(b) have same direction (C) |bar(c)|>|bar(a)| (D) |bar(b)|>|bar(c)|
If bar a=hat i +hat j+ hat k, bar b=hat i-hat j +hat k, bar c=hat i +2hat j-hat k then the value of |[bar a.bar a, bar a.bar b, bar a.bar c],[bar b.bar a,bar b.bar b, bar b.bar c],[bar c.bar a,bar c.bar b,bar c.barc]|