Home
Class 11
MATHS
Prove that sinx+2xgeq(3x(x+1))/pi, AA x ...

Prove that `sinx+2xgeq(3x(x+1))/pi, AA x in [0,pi/2]` (Justify the inequality, if any used).

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx+xge|k|x^(2), AA x in [0,(pi)/(2)] , then the greatest value of k is

If sinx+xge|k|x^(2), AA x in [0,(pi)/(2)] , then the greatest value of k is

If sinx+xge|k|x^(2), AA x in [0,(pi)/(2)] , then the greatest value of k is

If sinx+xge|k|x^(2), AA x in [0,(pi)/(2)] , then the greatest value of k is

prove that cos^-1(sinx)= pi/2-x

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

Using the relation 2(1-cos x) =x,AA x in[0,(pi)/(4)]

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Find the values of x in the interval [0,2pi] which satisfy the inequality: 3|2sinx-1|ge3+4cos^(2)x

Find the values of x in the interval [0,2pi] which satisfy the inequality: 3|2sinx-1|ge3+4cos^(2)x