Home
Class 11
MATHS
If a, b, c, d and p are different rea...

If a, b, c, d and p are different real numbers such that `(a^2+b^2+c^2)""p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0` , then show that a, b, c and d are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d and p are different real numbers such that (a^2+b^2+c^2).p^2-2(ab+b c+cd) p +(b^2+c^2+d^2) le 0 , then show that a, b, c and d are in G.P .

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

If a ,\ b ,\ c ,\ d\ a n d\ p are different real numbers such that: (a^2+b^2+c^2)p^(2)-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0 , then show that a ,\ b ,\ c and d are in G.P.

If a,b,c,d and p are different real numbers such that (a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 ,then show that a,b,c and d are in G.P.

If a,b,c,d and p are different real numbers such that: (a^(2)+b^(2)+c^(2))p^(I2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 ,then show that a,b,c and d are in G.P.

If a ,b ,c ,da n dp are distinct real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0, then prove that a ,b ,c , d are in G.P.

If a ,b ,c ,da n dp are distinct real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0, then prove that a ,b ,c , d are in G.P.

If a, b, d and p are distinct non - zero real numbers such that (a^2+b^2 + c^2) p^2 - 2(ab+bc+cd)p+(b^2 + c^2 +d^2) le 0 then n. Prove that a, b, c, d are in G. P and ad = bc