Home
Class 7
MATHS
If h^(2)=a^(2)+b^(2), then b=sqrt(h^(2)-...

If `h^(2)=a^(2)+b^(2)`, then b`=sqrt(h^(2)-a^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

(a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)))

(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))+b)-:(sqrt(a^(2)+b^(2))-b)/(a-sqrt(a^(2)-b^(2)))

If a,b,c are in H.P., then (c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2)) =

If A=2h(l+b ), then b=____

If x = (sqrt(a^2+b^2)+sqrt(a^2-b^2))/(sqrt(a^2+b^2)-sqrt(a^2-b^2)) show that b^2x^2-2a^2x+b^2 =0 .

Tangents are drawn to x^(2)+y^(2)=16 from the point P(0,h). These tangents meet the x- axis at A and B. If the area of triangle PAB is minimum,then h=12sqrt(2) (b) h=6sqrt(2)h=8sqrt(2) (d) h=4sqrt(2)

If A is the area an equilateral triangle of height h , then (a) A=sqrt(3)\ h^2 (b) sqrt(3)A=h (c) sqrt(3)A=h^2 (d) 3A=h^2

If A is the area an equilateral triangle of height h , then (a) A=sqrt(3)\ h^2 (b) sqrt(3)A=h (c) sqrt(3)A=h^2 (d) 3A=h^2