Home
Class 11
MATHS
The x-coordinates of the vertices of a s...

The x-coordinates of the vertices of a square of unit area are the roots of the equation `x^2-3|x|+2=0` . The y-coordinates of the vertices are the roots of the equation `y^2-3y+2=0.` Then the possible vertices of the square is/are `(1,1),(2,1),(2,2),(1,2)` `(-1,1),(-2,1),(-2,2),(-1,2)` `(2,1),(1,-1),(1,2),(2,2)` `(-2,1),(-1,-1),(-1,2),(-2,2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^2-3|x|+2=0 . The y-coordinates of the vertices are the roots of the equation y^2-3y+2=0. Then the possible vertices of the square is/are (a)(1,1),(2,1),(2,2),(1,2) (b)(-1,1),(-2,1),(-2,2),(-1,2) (c)(2,1),(1,-1),(1,2),(2,2) (d)(-2,1),(-1,-1),(-1,2),(-2,2)

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^2-3|x|+2=0 . The y-coordinates of the vertices are the roots of the equation y^2-3y+2=0. Then the possible vertices of the square is/are (a)(1,1),(2,1),(2,2),(1,2) (b)(-1,1),(-2,1),(-2,2),(-1,2) (c)(2,1),(1,-1),(1,2),(2,2) (d)(-2,1),(-1,-1),(-1,2),(-2,2)

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^(2)-3|x|+2=0 .The y -coordinates of the vertices are the roots of the equation y^(2)-3y+2=0. Then the possible vertices of the square is/are (1,1),(2,1),(2,2),(1,2)(-1,1),(-1,-1),(1,2),(2,2)(-2,1),(-1,-1),(-1,2),(-2,2)

Find the coordinates to the vertices, the foci, the eccentricity and the equation of the directrices of the hyperbola : 3x^2 - 2y^2 = 1

Find the coordinates to the vertices, the foci, the eccentricity and the equation of the directrices of the hyperbola : 3x^2 - 2y^2 = 1

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4