Home
Class 12
MATHS
Six boys are to be seated in a row. The ...

Six boys are to be seated in a row. The number of ways in which any 3 boys are not seated in the places specified to them, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If n things are arranged in a row, the number of way in which they can be arranged so that non occupies its original position is n!(1-(1)/(1!)+(1)/(2!)-(1)/(3!)+* * * + (-1)^(n)(1)/(n!)) Five boys are to be seated in a row. The number of ways in which 3 boys are not seated in the place specfied to them is

If n things are arranged in a row, the number of way in which they can be arranged so that non occupies its original position is n!(1-(1)/(1!)+(1)/(2!)-(1)/(3!)+* * * + (-1)^(n)(1)/(n!)) Five boys are to be seated in a row. The number of ways in which 3 boys are not seated in the place specfied to them is

The number of ways in which 5 boys and 3 girls can be seated in a row, so that no two girls sit together is

The number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is beween two boys, is-

The number of ways in which 5 boys and 3 girls be seated in a row so that each girl is between two boys is

The number of ways in which 5 boys and 3 girls can he seated in a row so that each girl is between two boys is

Find the number of ways in which 5 boys and 5 girls be seated in a row so that no two girls sit together

The number of the ways in which 5 girls and 3 boys can be seated in a row so that no two boys are together is

Find the number of ways in which 5 boys and 5 girls be seated in a row so that all the girls are never together

There are 12 boys to be seated on 2 benches , 6 on each lench . Two of them desire to sit on the bench and two others on the other . The number of ways in which the boys can be seated on the benches is