Home
Class 10
MATHS
Prove that sin^(2)(A+B)-sin^(2)(A-B)=sin...

Prove that `sin^(2)(A+B)-sin^(2)(A-B)=sin2A*sin2B`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)(A + B) - sin^(2)(A - B) = sin 2A sin 2B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that sin(A+B)sin(A-B)=sin^2A-sin^2B

Prove that : sin (A + B) sin (A - B) = sin^2A- sin^2B .

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove that (sin^Acos^B-cos^2Asin^2B)=(sin^2A-sin^2B)

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B