Home
Class 10
MATHS
Prove that (1)/(2)tan^(-1)(4/3)=tan^(-1)...

Prove that `(1)/(2)tan^(-1)(4/3)=tan^(-1)(1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

Prove that- tan^-1(1/2)+tan^-1(1/5)+tan^-1(1/8)=pi/4

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

Prove that "Tan"^(-1)2+Tan^(-1)3=Cot^(-1)(1/2)+Cot^(-1)(1/3)=(3pi)/4

Prove that 2tan^(-1)""(1)/(5)+tan^(-1)""(1)/(4)=tan^(-1)""(32)/(43)

Prove that 2tan^(-1)""(1)/(5)+tan^(-1)""(1)/(8)=tan^(-1)""(4)/(7)

Prove that "tan"^(-1)(1/4)+"tan"^(-1)(2/9)=1/2"tan"^(-1)(4/3) .

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .