Home
Class 11
MATHS
lim(n rarr oo){1/2tan(x/2)+1/2^2tan(x/2^...

`lim_(n rarr oo){1/2tan(x/2)+1/2^2tan(x/2^2)....+1/2^ntan(x/2^n)}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(x rarr oo)(n+1)/(2n^(2)+n-1)

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

lim_(x rarr oo)tan^(-1)(x^(2)-x^(4))

Find the sum: tan x + 1/2 tan x/2+ 1/2^(2) tan x/2^(2) +.....+1/2^(n-1) tan x/2^(n-1)

lim_ (n rarr oo) (1) / (2) tan ((x) / (2)) + (1) / (2 ^ (2)) tan ((x) / (2 ^ (2))). ... + (1) / (2 ^ (n)) tan ((x) / (2 ^ (n))) is equal to lim_ (n rarr oo) sum_ (n = 1) ^ (n) (1 ) / (2 ^ (n)) tan ((x) / (2 ^ (n)))

lim_(x rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+?+(n)/(5n)) is equal to (A) (pi)/(2)(B)(pi)/(4)(C)tan^(-1)(2)(D)tan^(-1)(3)

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)