Home
Class 11
MATHS
If the angle theta is acute, then the ac...

If the angle `theta` is acute, then the acute angle between `x^(2)(cos theta-sin theta)+2xy cos theta+y^(2)(cos theta+sin theta)=0,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the angle 2 theta is acute, then the acute angle between the pair of lines x^(2)(cos theta-sin theta)+2 x y cos theta+y^(2)(cos theta+sin theta)=0 is

If 2 theta is an acute angle, then the acute angle between the two lines x^(2)(cos theta-sin theta)+2xy.cos theta +y^(2)(cos theta +sin theta)=0 is

Find the acute angle theta such that 2cos^2theta=3sintheta .

Find an acute angle theta when (cos theta-sin theta)/(cos theta+sin theta)=(1-sqrt(3))/(1+sqrt(3))

Find an acute angle theta, when (cos theta-sin theta)/(cos theta+sin theta)=(1-sqrt(3))/(1+sqrt(3))

Angle between the lines x^(2)[cos^(2) theta-1]-xy sin^(2) theta+y^(2) sin^(2) theta= theta is

If (sin theta+cos theta)/(sin theta-cos theta)=3 and theta is an acute angle, then the value of (3sin theta+4cos theta)/(8cos theta-3sin theta) is: यदि (sin theta+cos theta)/(sin theta-cos theta)=3 तो (3sin theta+4cos theta)/(8cos theta-3sin theta) का मान ज्ञात करें ।

If sin2 theta-cos3 theta=0 and theta is acute then theta =