Home
Class 11
PHYSICS
AB is a uniformly shaped rod of length L...

AB is a uniformly shaped rod of length L and cross sectional are S, but its density varies with distance from one end A of the rod as `rho=px^(2)+c`, where p and c are positive constants. Find out the distance of the centre of mass of this rod from the end A.

Promotional Banner

Similar Questions

Explore conceptually related problems

Linear mass density of a rod AB(of length 10 m) varies with distance x from its end A as lambda = lambda_0x^3 ( lambda_0 is positive constant) . Distance of centre of mass of the rod , from end B is

The linear density of a thin rod of length 1m lies as lambda = (1+2x) , where x is the distance from its one end. Find the distance of its center of mass from this end.

The linear density of a thin rod of length 1m lies as lambda = (1+2x) , where x is the distance from its one end. Find the distance of its center of mass from this end.

A rod of length L is placed along the x-axis between x=0 and x=L . The linear mass density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx . Here, a and b are constants. Find the position of centre of mass of this rod.

A rod of length L is placed along the x-axis between x=0 and x=L . The linear mass density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx . Here, a and b are constants. Find the position of centre of mass of this rod.

Linear mass density of a rod AB ( of length 10 m) varied with distance x from its end A as lambda = lambda_0 x^3 ( lamda_0 is positive constant). Distance of centre of mass the rod, form end B is

Linear mass density of a rod AB ( of length 10 m) varied with distance x from its end A as lambda = lambda_0 x^3 ( lamda_0 is poitive constant). Distance of centre of mass the rod, form end B is

If the linear density (mass per unit length) of a rod of length 3 m is proportional to x , where x , where x is the distance from one end of the rod, the distance of the centre of gravity of the rod from this end is.