Home
Class 10
MATHS
If log(a^3-b^3)-log3=3/2(log a+log b), f...

If `log(a^3-b^3)-log3=3/2(log a+log b),` find the value of `(a/b)^3+(b/a)^3.`

Text Solution

Verified by Experts

`log(a^3 - b^3) - log3 = 3/2( log a + log b)`
`log((a^3-b^3)/3) = 3/2(log ab)`
`log ((a^3-b^3)/3) = log (ab)^(3/2)`
`(a^3- b^3)/3 = (ab)^(3/2)`
`a^3 - b^3 = 3(ab)^(3/2)` eqn1
`(a/b)^3- 1 = 3(ab)^(3/2)`
`(a/b)^3 = 1 + 3(a/b)^(3/2)`
`1 - (b/a)^3 = (3(ab^(3/2)))/a^3`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If log((a+b)/(3))=(1)/(2)(log a+log b) then the value of (a)/(b)+(b)/(a)

If log(2a-3b)=log a-log b, then a=

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x , then find the value of a + b.

If log_(a)b=2,log_(b)c=2, and log_(3)c=3+log_(3)a then the value of c/(ab) is..........

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b