Home
Class 12
MATHS
If the vectors r1 = sec^2 A, 1,1; r2, = ...

If the vectors `r_1 = sec^2 A, 1,1; r_2, = 1, sec^2 B,1 ; r_3= 1, 1, sec^2 C` are coplanar, then `cot^2 A + cot^2 B+ cot^2 C` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^2 C)hatk are coplanar then cot^2 A+cot^2B+cot^2C is

IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^2 C)hatk are coplanar then cot^2 A+cot^2B+cot^2C is

In a triangle ABC, if r_1 + r_3 + r = r_2 , then find the value of (sec^2 A + cos^2 B-cot^2 C) ,

In a triangle ABC, if r_1 + r_3 + r = r_2 , then find the value of (sec^2 A + csc^2 B-cot^2 C) ,

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

(1 + cot A — cosec A) (1 + tan A + sec A) = 2 .

In a A B C , if r_1+r_3+r=r_2, then sec^2A+cos e c^2B' is equal to 1-cos^2C (2) 1+cos e c^2C (4) 2-cot^2C