Home
Class 11
MATHS
If f(x)=(1)/(1-x), then prove that : f[f...

If `f(x)=(1)/(1-x)`, then prove that : `f[f{f(x)}]=x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x)=(1-x)/(1+x), prove that f[f{f(1/x)}]=-f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^(2))]=2f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot