Home
Class 11
MATHS
The smallest positive angle which satisf...

The smallest positive angle which satisfies the equation `2sin^2theta+sqrt(3)costheta+1=0` is `(5pi)/6` b. `(2pi)/3` c. `pi/3` d. `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive angle which satisfies the equation 2sin^(2)theta+sqrt(3)costheta+1=0 , is

The smallest positive angle which satisfies the equation 2sin^(2)theta+sqrt(3)cos theta+1=0 is (5 pi)/(6)b(2 pi)/(3)c*(pi)/(3)d*(pi)/(6)

The number of values of theta in [ 0, 2pi] satisfying the equation 2sin^2theta=4 + 3 costheta are

A value of theta satisfying costheta+sqrt(3)\ sin theta=2 is a. (5pi)/3 b. (4pi)/3 c. (2pi)/3 d. pi/3

The smallest value of theta satisfying the equation sqrt(3)(cot theta+tan theta)=4 is 2 pi/3 b.pi/3c. pi/6d. pi/12

If costheta+sqrt(3)sintheta=2, then theta= a. pi//3 b. 2pi//3 c. 4pi//3 d. 5pi//3

The smallest positive x satisfying the equation log_(cos x)sin x+log_(sin x)cos x=2 is (pi)/(2)(b)(pi)/(3)(c)(pi)/(4)(d)(pi)/(6)

A value of theta satisfying cos theta+sqrt(3)s int h eta=2 is (5 pi)/(3) b.(4 pi)/(3) c.(2 pi)/(3) d.(pi)/(3)

The value of theta satisfying the given equation cos theta+sqrt(3)sin theta=2, is (A) (pi)/(3)(B)(5 pi)/(3)(C)(2 pi)/(3) (D) (4 pi)/(3)