Home
Class 12
MATHS
Prove that cos^(-1)(3/11)-sin^(-1)(3/4)=...

Prove that `cos^(-1)(3/11)-sin^(-1)(3/4)=sin^(-1)(19/44)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)(12/13)+sin^(-1)(1/sqrt(5))=tan^(-1)(22/19)

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi

Prove that sin^(-1)""1/3+sin^(-1)""1/(3sqrt11)+sin^(-1)""(3)/(sqrt11)=pi/2

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Prove that sin^(-1)(3x-4x^3)=3sin^(-1)x,x in[1/2,1]

Prove that tan^(-1)1 +cos^(-1)(-(1)/(2)) +sin^(-1) (-(1)/(2)) =(3pi)/(4) .

Prove that cos(2Tan^(-1)1/7) = sin(4Tan^(-1)1/3)

Prove that sin^(-1)((3)/(5)) + sin^(-1)((8)/(17)) = cos^(-1)((36)/(85)) .

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi