Home
Class 12
MATHS
If vec(AO)+vec(OB)=vec(BO)+vec(OC) then ...

If `vec(AO)+vec(OB)=vec(BO)+vec(OC)` then A,B,C,D form a/an (A) equilaterla triangle (B) righat angled triangle (C) isosceles triangle (D) straighat line

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec (AO) +vec (OB)| =|vec(BO) + vec(OC)| , then A, B, C form

If | vec AO + vec OB | = | vec BO + vec OC |, then A, B, C form

If vec(AO)+vec(OB)=vec(BO)+vec(OC) , show that the points A, B and C are collinear.

If vec AO+vec OB=vec BO+vec OC, prove that A,B,C are collinear points.

If vec x and vec y are two non-collinear vectors and ABC isa triangle with side lengths a,b, and satisfying (20a-15b)vec x+(15b-12c)vec y+(12c-20a)(vec xxvec y)=0 then triangle ABC is a.an acute-angled triangle b.an obtuse- angled triangle c.a right-angled triangle d.an isosceles triangle

If vec xa n d vec y are two non-collinear vectors and A B C isa triangle with side lengths a ,b ,a n dc satisfying (20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vec xxx vec y)=0, then triangle A B C is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

If vec xa n d vec y are two non-collinear vectors and A B C isa triangle with side lengths a ,b ,a n dc satisfying (20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vecx xx vec y)=0, then triangle A B C is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

If vec xa n d vec y are two non-collinear vectors and A B C isa triangle with side lengths a ,b ,a n dc satisfying (20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vecx xx vec y)=0, then triangle A B C is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec x xx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec xxx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle