Home
Class 12
MATHS
यदि f(x)=(1)/(sqrt(18-x^(2))) है, तब li...

यदि `f(x)=(1)/(sqrt(18-x^(2)))` है, तब `lim_(x to 3) (f(x)-f(x))/(x-3)` का मान क्या होगा ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim_(xto3) (\f(x)-f(3))/(x-3) ?

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

f(x)=sqrt(x^(2)+1) then lim_(xto3)(f(x)-sqrt(10))/(x-3) is

Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt_(x -> 3) (f(x)-f(3)) / (x-3) is

If f(x)=-sqrt(25-x^(2)) then find lim_(x rarr1)(f(x)-f(1))/(x-1)

यदि f' (a) विधमान है तब lim_(x to a) (x f(a)-a f(x))/(x-a)=

If F(x)=sqrt(9-x^(2)), then what is lim_(x rarr1)(F(x)-F(1))/(x-1) equal to

Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)