Home
Class 11
MATHS
For any real value of theta != pi the va...

For any real value of `theta != pi` the value of the expression `y=(cos^2theta-1)/(cos^2theta+costheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any real value of theta!=pi the value of the expression y=(cos^(2)theta-1)/(cos^(2)theta+cos theta)

Statement - I : For any real value of theta!=(2n+1)pior\ (2n++1)pi/2,\ n in I , the value of the expression y=(cos^2theta-1)/(cos^2theta+costheta) is ygeq0 or y>= 2 (either less than or equal to zero or greater than or equal to two) Because Statement II : sectheta\ in (-oo,-1]uu[1,oo) for all real values of theta . A (b) B (c) C (d) D

int(costheta-cos2theta)/(1-cos theta)d theta=

The real value of theta for which the expression (1+i cos theta)/(1-2i cos theta) is real number is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta)

The real value of theta for which the expression (1+I cos theta)/(1-2i cos theta) is a real number is

The real value of theta for which the expression (1 + icos theta)/(1 - 2i cos theta) is real number is

The real value of theta for which the expression (1 + icos theta)/(1 - 2i cos theta) is real number is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is

The maximum value of the expression (1)/(sin^(2)theta+3sin theta cos theta+5cos^(2)theta) is