Home
Class 12
MATHS
" Icses af "(If)A=[[3,-4],[1,-1]]," fate...

" Icses af "(If)A=[[3,-4],[1,-1]]," fatell" for (show that) "A^(n)=[[1+2n,-4n],[n,1-2n]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[3,-4],[1,-1]] , then prove that A^n=[[1+2n,-4n],[n,1-2n]] , where n is any positive integer.

Answer the following questions.If A=[[3,-4],[1,-1]] ,prove that A^n=[[1+2n,-4n],[n,1-2n]] for all n in N

if A=[[3, -4],[ 1, (-1)]] , then prove that A^n=[[1+2 n, -4 n ],[n , 1-2n]] where n is any positive integer.

If A=[(3,-4),(1,-1)] , prove by induction that A_n=[(1+2n,-4n),(n,1-2n)],n in N

if A=[{:(3,-4),(1m,-1):}], then show that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] is true for all natural values of n.

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

IF A=[{:(3,-4),(1,-1):}] then show that A^n=[{:(1+2n,-4n),(n,1-2n):}] , for any integer n ge1 .

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.