Home
Class 11
MATHS
If cos B=(sin A)/(2sin C) then prove tha...

If `cos B=(sin A)/(2sin C)` then prove that the triangle is isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

If 2 cos A = (sin B)/(sin C) then show that the triangle is isosceles.

In a triangle ABC, if cos A=(sin B)/(2sin C), show that the triangle is isosceles.

In a Delta ABC, if cos C = (sin A)/(2 sin B) , show that the triangle is isosceles.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that the triangle in an isosceles right angled.

In a Delta ABC if (a+b)cos((B)/(2))=b(a+c)cos((C)/(2)) then prove that the triangle ABC is isosceles.