Home
Class 12
MATHS
vec a,vec b,vec c, dare any four vectors...

`vec a,vec b,vec c`, dare any four vectors then `(vec axx vec b)xx(vec c xx vec d)` is a vector Perpendicular to `vec a,vec b,vec c,vec d`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that if vec a,vec b,vec c and vec d are any four vectors, then (vec a xx vec b)*(vec c xx vec d)= [[vec a* vec c vec b* vec c], [vec a* vec d vec b* vec d]]

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

36. If vec a, vec b, vec c and vec d are unit vectors such that (vec a xx vec b) .vec c xx vec d = 1 and vec a.vec c = 1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c, vec d are non -coplanar c) vec b, vecd are non parallel d) vec a, vec d are parallel and vec b, vec c are parallel

36. If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a,vec b,vec c are any three vectors, prove that vec a xx (vec b xx vec c) +vec b xx(vec c xx vec a)+ vec c xx(vec a xx vec b) = vec 0

If 4 vec a+5 vec b+9 vec c=0, then ( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)] is equal to a. vector perpendicular to the plane of a ,b ,c b. a scalar quantity c. vec0 d. none of these