Home
Class 12
MATHS
10*tan^(-1)x+cot^(-1)(1+x)=tan^(-1)(1+x+...

10*tan^(-1)x+cot^(-1)(1+x)=tan^(-1)(1+x+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

cot(tan^(-1)x+cot^(-1)x)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

cot^(-1)x=tan^(-1)x then

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

Show that : tan^-1 x+cot^-1(1+x)=tan^-1(1+x+x^2)