Home
Class 12
MATHS
" Q.39Let "g(x)=x.f(x)" ,where "f(x)={[x...

" Q.39Let "g(x)=x.f(x)" ,where "f(x)={[x sin(1)/(x),x!=0],[0,x=0]" at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

g(x)=xf(x) , where f(x)=x"sin"(1)/(x),x!=0=0,x=0 . At x=0 :

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

Let f,g:R rarr R be two function diffinite f(x)={x sin((1)/(x)),x!=0; and 0,x=0 and g(x)=xf(x)

Let Q(x)=f(x)+f(1-x) and f'(x)<0,0<=x<=

Let g(x)=f(f(x)) where f(x)={1+x;0<=x<=2} and f(x)={3-x;2

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

f(x)=x o* g(x)=[(sin pi)/(x),x!=0;0x=0 check continuity of f(x)+-g(x)