Similar Questions
Explore conceptually related problems
Recommended Questions
- " Q.39Let "g(x)=x.f(x)" ,where "f(x)={[x sin(1)/(x),x!=0],[0,x=0]" at ...
Text Solution
|
- If y=f(x) satisfy (x.f(x))^(99)+(x.f(x))^(98)+...+(x.f(x))+1=0
Text Solution
|
- g(x)=xf(x), जहाँ f(x)={(x sin (1//x)",",x ne 0),(0",",x=0):} तब x...
Text Solution
|
- Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)s...
Text Solution
|
- If f(x) is continuous at x=0, where f(x)=sin x-cos x, for x!=0, then ...
Text Solution
|
- If f(x) is continuous at x=0, where f(x)=(sin (a+x)-sin (a-x))/(tan (a...
Text Solution
|
- If f(x) is continuous at x=0, where f(x)=((e^(2x)-1)tan x)/( x sin x)...
Text Solution
|
- If f(x) is continuous at x=0, where f(x)={((sin x)/(x)+cos x", for " ...
Text Solution
|
- If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is
Text Solution
|