Home
Class 11
MATHS
Show that (a^(2) +ab+b^(2)) ,(c^(2) +ac...

Show that ` (a^(2) +ab+b^(2)) ,(c^(2) +ac +a^(2)) and ( b^(2) +bc+ c^(2)) ` are in AP, if a,b,c are in AP.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (b^(2) + c^(2) - a^(2))/(2bc), (c^(2) + a^(2) - b^(2))/(2ca), (a^(2) + b^(2) - c^(2))/(2ab) are in A.P. and a+b+c = 0 then prove that a(b+c-a), b(c+a-b), c(a+b-c) are in A.P.

If a^(2),b^(2),c^(2) are in A.P,then show that: b+c-a,c+a-b,a+b-c are in A.P.

If a,b,c are in AP, show that (i) (b+c) , (c+a) and (a +b) are in AP. (ii) a^(2) (b+c) , b^(2) (c +a) and c^(2) ( a+b) are in AP.

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

If a^(2) , b^(2) , c^(2) are in A.P , pove that a/(a+c) , b/(c+a) , c/(a+b) are in A.P .

If a,b,c are in Ap, show that (i) (b +c-a),(c+a-b) ,(a+b-c) are in AP. (bc -a^(2)) , (ca - b^(2)), (ab -c^(2)) are in AP.

If a^(2),b^(2),c^(2) are in A.P.then show that: bc-a^(2),ca-b^(2),ab-c^(2) are in A.P.

if a,b,c are in AP, show that [(b+c)^(2) -a^(2)],[(c+a)^(2) -b^(2)],[(a+b)^(2) =c^(2)] are in AP.

If a^(2)(b+c),b^(2)(c+a),c^(2)(a+b) are in A.P. then prove that a,b,c are in A.P.or ab+bc+ca=0