Home
Class 12
MATHS
loge[(x-1) + sqrt(x^2-2x)],x>=2 is equal...

`log_e[(x-1) + sqrt(x^2-2x)],x>=2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

lim _( x to 0) [ (2 ^(x) -1)/( sqrt (1 + ) x-1 )] is equal to: a) log _(e) 2 b) log _(e) sqrt2 c) log _(e) 4 d) 1/2

[" Number of integers in the domain "],[" of real valued function "],[f(x)=sqrt((1)/(log_((3x-2))(2x+3))-log_((2x+3))(x^(2)-x+1))],[" is equal to- "]

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c