Home
Class 12
MATHS
In any triangle ABC, if A=tan^(-1) 2 and...

In any triangle ABC, if `A=tan^(-1) 2 and B = tan^(-1) 3`. Prove that `C= pi/4`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if A = tan^(-1) 2 and B = tan^(-1) 3 , then C is equal to

In any triangle ABC, if tan (A/2), tan (B/2), tan (C/2) are in A.P., prove that, cosA, cosB, cosC are also in A.P.

If in a triangle, two angles are tan^(-1)2 and tan^(-1)3 then prove that the third angle is pi/4 .

In any triangle ABC,1-tan((A)/(2))tan((B)/(2))=

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If C is a right angle in the triangle ABC, show that, tan^(-1) 'a/(b+c)' + tan^(-1) 'b/(c+a)' = pi/4 .

If in triangleABC, tan^(-1)(a/(b+c))+ tan^(-1)(c/(a+b)) = pi/4 , then prove that, the triangle is right angled.

if tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove that a+b+c=abc

In triangle ABC,tan(A-B)+tan(B-C)+tan(C-A=0 Prove that the triangle isisoceles.