Home
Class 12
MATHS
If z1 and z2 are two complex numbers and...

If `z_1 and z_2` are two complex numbers and `c>0` then prove that`(z_1+z_2)^2lt=(1+c)|z_1|^2+(1+c^(- 1))|z_2|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 and z_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

If z_(1) and z_(2) are two complex numbers and c>0, then prove that |z_(1)+z_(2)|^(2)<=(1+c)|z_(1)|^(2)+(1+c^(-1))|z_(2)|^(2)

If z_1 and z_2 are two complex numbers, then prove that |z_1 - z_2|^2 le (1+ k)|z_1|^2 +(1+K^(-1) ) |z_2|^2 AA k in R^(+) .

If z_1 , and z_2 be two complex numbers prove that bar(z_1+-z_2)=barz_1+-barz_2

If z_1 and z_2 (ne 0) are two complex numbers, prove that : |z_1 z_2|= |z_1||z_2| .