Home
Class 10
MATHS
" If "log(2)x+log(2)y>=6," then the leas...

" If "log_(2)x+log_(2)y>=6," then the least value of "x+y" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_2x+(log)_2ygeq6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

If (log)_2x+(log)_2ygeq6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

If (log)_2x+(log)_2ygeq6, then the least value of x+y is 4 (b) 8 (d) 16 (d) 32

1+log_(x)y=log_(2)y

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

If log_(2)x+log_(2)y>=6prove that the smallest possible value of x+y is 16.

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is