Home
Class 12
MATHS
The minimum value of [x1-x2)^2 + ( 12 - ...

The minimum value of `[x_1-x_2)^2 + ( 12 - sqrt(1 - (x_1)^2)- sqrt(4 x_2)]^(1/2)` for all permissible values of `x_1` and `x_2` is equal to `asqrtb -c` where `a,b,c in N`, the find the value of a+b-c

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of (x_1-x_2)^2+(sqrt(2-x_1^2)-9/(x_2))^2 where x_1in(0,sqrt2) and x_2inR^+

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

Find the minimum value of (x_1-x_2)^2+((x_1^2)/20-sqrt((17-x_2)(x_2-13)))^2 where x_1 in R^+,x_2 in (13,17) .

Find the minimum value of (x_1-x_2)^2+((x_1^2)/20-sqrt((17-x_2)(x_2-13)))^2 where x_1 in R^+,x_2 in (13,17) .

Find the minimum value of (x_1-x_2)^2+((x_1^2)/20-sqrt((17-x_2)(x_2-13)))^2 where x_1 in R^+,x_2 in (13,17) .

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

Show that the minimum value of (x+a)(x+b)//(x+c) where a > c ,b > c , is (sqrt(a-c)+sqrt(b-c))^2 for real values of x > -c .

Find the minimum value of (x_(1)-x_(2))^(2)+((x_(1)^(2))/(20)-sqrt((17-x_(2))(x_(2)-13)))^(2) where x_(1)in R^(+),x_(2)in(13,17)