Home
Class 12
MATHS
If sum(r=0)^n((r^3+2r^2+3r+2)/(r+1)) ^...

If `sum_(r=0)^n((r^3+2r^2+3r+2)/(r+1)) ^nC_r=(2^4+2^3+2^2-2)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum_(r=1)^n = r(r - 3) (r - 2)

If sum_(r=0)^n(2r+3)/(r+1), C_r=((n+k)*2^(n+1)-1)/(n+1) then 'k' is

Evaluate sum_(r=0)^n(r+1)^2*"^nC_r

If sum_(r=0)^(n-1)(("^nC_r)/(^nC_r+^nC_(r+1)))^3=4/5 then n=

Find sum_(r=1)^n (1^2 + 2^2 + 3^2 +…….+ r^2) / (r + 1)

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that sum_(r = 1)^n r^3 ((n_C_r)/(C_(r - 1)))^2 = (n (n + 1)^2 (n+2))/(12)

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to