Home
Class 12
MATHS
If the straight line x cosalpha + ysinal...

If the straight line `x cosalpha + ysinalpha=p` touches the curve `(x/a)^n+(y/b)^n=2` at the point `(a,b)` on it, then `1/a^2+1/b^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1 , then p^2dot

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

If x/a+y/b=2 touches the curve x^n/a^n+y^n/b^n=2 at the point (alpha,beta) then:

If x/a + y/b = 2 touches the curve x^n/a^n + y^n/b^n = 2 at the point (alpha, beta), then

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

The line (x)/(a)+(y)/(b)=2 touches the curve ((x)/(a))^(n)+((y)/(b))^(n)=2 at the point (a, b) for

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ s in^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot