Home
Class 12
MATHS
If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2...

If `f^(prime)(x)=sqrt(2x^2-1)` and `y=f(x^2)` , then find `(dy)/(dx)` at `x=1` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

if f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)) then (dy)/(dx) at x=1 is: