Home
Class 12
MATHS
[" If "f(x)=x^(n)" ,then the value of "f...

[" If "f(x)=x^(n)" ,then the value of "f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f'''(1))/(3!)+...+((-1)^(n)f^(n)(1))/(n!)" is "],[[" (1) "2^(n)," (2) "2^(n-1)],[" (3) "0," (4) "1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(n),"n" epsilon N , then the value of f(1)-(f^(')(1))/(1!)+(f^('')(1))/(2!)-(f^(''')(1))/(3!)+…+(-1)^(n)(f^(n)(1))/(n!) is

If f(x)=x^(n),"n" epsilon N , then the value of f(1)-(f^(')(1))/(1!)+(f^(")(1))/(2!)-(f^''')(1)/(3!)+…+(-1)^(n)(f^(n)(1))/(n!) is

If f(x)=x^(n),"n" epsilon N , then the value of f(1)-(f^(')(1))/(1!)+(f^(")(1))/(2!)-(f^''')(1)/(3!)+…+(-1)^(n)(f^(n)(1))/(n!) is

if f(x)=x^(n) then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)+--+((-1)^(n)f^(prime--n)xx(1))/(n!)

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)