Home
Class 11
MATHS
यदि (If) tanalpha= (1)/(7) , sin beta =...

यदि (If) `tanalpha= (1)/(7) , sin beta = (1)/(sqrt(10))` साबित करें कि `alpha+2beta= (pi)/(4)` , जहाँ` 0 lt alpha lt(pi)/(2)` और `0 lt beta lt(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha=(1)/(7),sin beta=(1)/(sqrt(10)), prove that alpha+2 beta=(pi)/(4), where 0

If tan alpha=(1)/(7),sin beta=(1)/(sqrt(10)), Prove that :alpha+2 beta=(pi)/(4), where 0

If 0 lt alpha lt beta lt (pi)/(2) then

If tanalpha=1/7,sin beta=1/(sqrt(10)), prove that alpha+2beta=pi/4

If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4), find tan 2 alpha .

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

If tanalpha=1/7,sinbeta=1/(sqrt(10)), prove that alpha+2beta=pi/4 , where 0

0

If cos (alpha+beta)=(4)/(5), sin (alpha-beta)=(5)/(13) and 0 lt alpha , beta lt(pi)/(4), then tan 2 alpha=