Home
Class 12
MATHS
If bi=1-ai ,n a=sum(i=1)^n ai ,n b=sum(i...

If `b_i=1-a_i ,n a=sum_(i=1)^n a_i ,n b=sum_(i=1)^n b_i ,t h e nsum_(i=1)^n a_i ,b_i+sum_(i=1)^n(a_i-a)^2=` `a b` b. ` n a b` c. `(n+1)a b` d. `n a b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If =1-a_(i),na=sum_(i=1)^(n)a_(i),nb=sum_(i=1)^(n)b_(i), then sum_(i=1)^(n)a_(i),b_(i)+sum_(i=1)^(n)(a_(i)-a)^(2)ab b.-nab c.(n+1)ab d.nab

If b_i=1-a_i na = Sigma_(i=1)^(n) a_i, nb = Sigma_(i=1)^(n) b_i " then " Sigma_(i=1)^(n) a_b_i+Sigma_(i=1)^(n)(a_i-a)^2=

sum_(i=1)^n costheta_i=n then sum_(i=1)^n sintheta_i

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(i=1)^(n)cos theta_(i)=n then sum_(i=1)^(n)sin theta_(i)

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

Prove that identity : sum_(i=1)^(n) (x_i-bar x)^2 = sum_(i=1)^(n) x_i^2-n bar x^2= sum_(i=1)^(n) x_i^2 -(sum_(i=1)^(n) x_i)^2/n .