Home
Class 12
MATHS
f(x)=(sqrt(x^2+x-6))/(x^2-4)...

`f(x)=(sqrt(x^2+x-6))/(x^2-4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

Find the domain of f(x)=1/sqrt(x^2 -x -6)

Find the domain of f(x)=sqrt((4-x^(2))/([x]+2))

The domain of f(x)=sqrt(x^(2)-x-6) is

For the inequation (sqrt(6+x-x^(2)))/(2x+5)>=(sqrt(6+x-x^(2)))/(x+4)