Home
Class 12
MATHS
f(x)=1/(sqrt(| [ |x|-1] |-5)), [.] is t...

`f(x)=1/(sqrt(| [ |x|-1] |-5)),` [.] is the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of definition of the following functions : (i) f(x) = log_(10) sin (x-3) + sqrt(16 - x^(2)) (ii) f(x) = sqrt((4- |x|)/(7-|x|)) (iii) f(x) = (1)/(sqrt([|x|-1]|-5)) where [x] denotes the greatest integer function.

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

The greatest integer function f(x)=[x] is -

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The function f(x) =p [x+1] +q [x-1] where [x] is the greatest integer function, and lim _(xto1+) f(x) =lim _(x to 1-) f(x)= f(1) when-

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.