Home
Class 12
MATHS
Prove the following: tan^(-1)(1/4)+tan^(...

Prove the following: `tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Directions Prove the following "tan"^(-1)1/(4)+"tan"^(-1)2/(9)=1/(2)"cos"^(-1)3/(5)=1/(2)"sin"^(-1)4/(5) .

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove the following: 2\ tan^(-1)(1/5)+tan^(-1)(1/8)= tan^(-1)(4/7)

Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

Prove the following : "tan"^(-1)1/4+"tan"^(-1)2/9="tan"^(-1)1/2

Prove the following : sin^(-1)4/5+2\ tan^(-1)1/3=pi/2

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .

Prove that: tan^-1(1/4)+tan^-1(2/9)=1/2 cos^-1(3/5) .

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)